« Le Laser Zentrum Nord est l’une des nombreuses institutions scientifiques avec lesquelles nous avons établi une solide coopération au fil des ans », explique Frank Götzke. « Du fait de ses innombrables projets déployés notamment dans l’industrie aéronautique, ce centre dispose d’un vaste savoir-faire dans le domaine du traitement du titane ainsi que de technologies éprouvées. » Ces dernières années, les chercheurs de Hambourg ont obtenu de nombreux prix nationaux et internationaux de renom pour leurs travaux avec l’industrie.
« La collaboration avec Bugatti est pour nous un projet phare », souligne le Prof. Dr.-Ing. Claus Emmelmann. Ancien directeur général du Laser Zentrum Nord GmbH, il dirige aujourd’hui l’Institut Fraunhofer pour les technologies de fabrication additive (Fraunhofer-IAPT) depuis l’intégration du Laser Zentrum Nord dans le réseau de recherche de la Fraunhofer-Gesellschaft. Il est en outre à la tête de l’Institut des technologies laser et systèmes de l’Institut universitaire de technologie de Hambourg (iLAS). Claus Emmelmann est fier de la collaboration de son institut avec Bugatti : « Lorsque Bugatti nous a contactés, nous avons été immédiatement enthousiastes. Je ne connais aucune autre marque automobile qui exige autant de ses produits. Nous avons accepté de relever ce défi avec plaisir. »
Le temps de développement de l’étrier de frein en titane à imprimer en 3D a été relativement court : de l’idée initiale au premier composant imprimé, trois mois seulement se sont écoulés. C’est sous forme de jeu de données complet que Bugatti a transmis au Laser Zentrum Nord le concept de base, les simulations de résistance et de rigidité ainsi que la conception. Le centre a alors réalisé la simulation du procédé, la conception des structures de support, l’impression laser proprement dite et le traitement thermique du composant. Bugatti s’est ensuite chargé des opérations de finition.
L’imprimante 3D spéciale du Laser Zentrum Nord, qui était au début du projet la plus grande installation au monde adaptée au titane, dispose de quatre lasers d’une puissance unitaire de 400 W.
Il faut au total 45 heures pour imprimer un étrier de frein. Durant cet intervalle de temps, de la poudre de titane est déposée couche après couche. À chaque couche, les quatre lasers interviennent pour faire fondre la poudre de titane en fonction de la forme souhaitée de l’étrier de frein. Le matériau refroidit instantanément et l’étrier de frein prend forme. 2 213 couches sont nécessaires au total. Une fois la dernière couche achevée, la poudre de titane non fondue est retirée de la chambre de construction, nettoyée et stockée dans un processus fermé en vue de sa réutilisation. Il ne reste alors que l’étrier de frein avec sa structure de support destinée à préserver la forme du composant jusqu’à ce qu’il ait subi le traitement thermique stabilisant qui lui conférera sa résistance finale.
Pour ce faire, l’étrier de frein est placé dans un four, où il est exposé pendant 10 heures à des températures variant de 700 à 100 °C afin d’éliminer les contraintes résiduelles et garantir la stabilité dimensionnelle du composant. La structure de support est ensuite retirée et le composant séparé du plateau de construction. À l’étape suivante, les surfaces sont polies à l’aide d’un procédé mécanique et physico-chimique combiné, ce qui augmente considérablement la résistance à la fatigue et, par conséquent, la durabilité à long terme du composant au sein du futur véhicule. Enfin, les contours de toutes les surfaces fonctionnelles, comme les chambres de pistons ou les filetages, sont usinés. Cette opération, qui nécessite encore 11 heures supplémentaires, est réalisée dans une fraiseuse 5 axes.
Il en résulte un composant très filigrané avec des parois d’une épaisseur comprise entre 1 mm au minimum et 4 mm au maximum.
« Tenir entre les mains notre premier étrier de frein en titane imprimé en 3D fut un moment très émouvant pour nos équipes », se souvient Frank Götzke. « En termes de volume, c’est le plus grand composant fonctionnel en titane au monde produit par fabrication additive. Lorsqu’on le soulève, on est surpris par sa légèreté malgré sa taille imposante. C’est un composant à la fois très impressionnant d’un point de vue technique et merveilleusement esthétique. »
Les premiers essais de production en série débuteront au premier semestre de cette année. La date n’en a pas encore été fixée. Les temps de production se réduiront ensuite progressivement, notamment lors de la phase de post-traitement, promet l’ingénieur.
Frank Götzke et son équipe présentent les résultats de leur travail au groupe et à ses marques. « Bugatti est leader du développement de l’impression 3D au sein du groupe Volkswagen », souligne Frank Götzke. « Chacun peut et doit bénéficier de nos projets. C’est aussi la mission de Bugatti en tant que laboratoire du groupe pour les hautes technologies appliquées. »
L’étrier de frein en titane imprimé en 3D n’est qu’un exemple du travail de recherche et développement actuel de Bugatti. « Nous avons non seulement développé le plus grand composant en titane produit par fabrication additive, mais aussi le plus long composant au monde en aluminium jamais imprimé en 3D d’une seule pièce », explique Frank Götzke en sortant fièrement de l’armoire une platine d’essuie-glace de 63 cm de long. Avec ses 0,4 kg, elle ne pèse que la moitié du poids d’une platine en aluminium moulée sous pression classique, et ce avec la même rigidité. Mais c’est une autre histoire.